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The longitudinal wave-vector-dependent dielectric function €(g) is calculated for Si, Ge,
GaAs, and ZnSe. The energy eigenvalues and wave functions which are used have been ob-
tained from energy-band calculations based on the empirical pseudopotential method. Explicit
results are given in the [1,0,0], [1,1,0], and [1,1,1] directions in the range 0=<g¢= (47/a).

A comparison is made between the present results and the results of other calculations. Some

comparisons with experiment are also made.

I. INTRODUCTION

In this paper we present a calculation of the stat-
ic longitudinal wave-vector-dependent dielectric
function e(d) for the cubic semiconductors Si, Ge,
GaAs, and ZnSe. €(q) describes the response of a
crystal to an electric field parallel to § :

ﬁei'ﬁ of _ e(a)ﬁeia o7 .

For most applications we are interested in either
static fields or fields varying with phonon frequen-
cies; in this frequency region we may replace the
frequency-dependent dielectric function with the
static dielectric function €(§), an approximation
which is accurate to within 0. 1%.

Using the expression for €(d) givenby Ehrenreich
and Cohen,! we obtain

(1.1)

. 8me? Z Ik +d,v1K,0) 12
€e@)=1+—7 T,
@=1+ q° 3 E,(K)-E,(k+9)

ko0

(1.2)

> s : : I3
where k is summed over the first Brillouin zone,
v over the valence bands, and ¢ over the conduction

bands. In our calculations we use electronic wave
functions and energy eigenvalues which have been
calculated using the empirical pseudopotential
method.? Spin-orbit effects have not been included,
Calculations of €(§) for semiconductors were
first performed by Penn,® using a model isotropic
semiconductor, These calculations have recently
been redone by Srinivasan.! The present calcula-
tions agree fairly well with Srinivasan’s calcula-
tions except that our results exhibit a slight anisot-
ropy. Calculations based on more realistic band
models for Si and Ge havebeen performedby Nara. 5
Despite the fact that his model is almost identical
to ours, his results disagree to some extent with
our results, In particular, he finds a strong anisot-
ropy in €(d) at small ¢ which is missing from our
results. In addition, our calculations show € (3) to

- be a monotonically decreasing function of |§ | , a

feature which is not present in the results of Srin-
ivasan or of Nara (see Fig. 1).

€(@) has had many applications; it has been used
to calculate the lattice vibration spectrum of sili-
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FIG. 1. Our calculation of the microscopic longitudinal dielectric function of silicon compared with the calculations
by Srinivasan (Ref. 4) and by Nara (Ref. 5).

con,® screened pseudopotential form factors,” and
screened impurity potentials.®

II. CALCULATIONS

For the purposes of calculation Eq. (1.1) is writ-
ten as follows:

- 8 2 2
€@ =1+ Zf PhE
Kk +3,v1k,c) | 2(AR)®
% Agc:,u E[R)-E,K+q) , (2.1)

where the summation is over cubes of volume
(AR)® in the first Brillouin zone, with suitable
truncations at the zone boundaries, The summa-
tion index v spans the top four valence bands, and
the index ¢ spans the bottom 11 conduction bands.
For the semiconductors we consider, E, () is al-
ways greater than E,(k +3), and thus each contri-
bution to €(d) is positive.

The energy eigenvalues and eigenvectors are
calculated using the empirical pseudopotential
method, as described in Ref. 2, The pseudopoten-
tial form factors (Table I) have been adjusted so
that the reflectivity and the principal optical gaps
agree with experimental measurements.® Fifteen
energy eigenvalues and eigenvectors are computed
for each of 3360 points in the first Brillouin zone,
The coordinates of the grid of calculated points are
given by 75(2s +1, 2m +1, 2z +1) in units of 27/a,
where s, m, and » are integers.

For an arbitrary direction of §, the summation
in Eq. (2.1) must be performed over the entire
Brillouin zone. Fortunately, symmetry properties
can be exploited to reduce the computation time by
a factor of 8 in the [100] direction, by 6 in the
[111] direction, and by 4 in the [110] direction,
The computation time for a particular value of §
can be reduced by an additional factor of 15 if § is
chosen such that (E +4) also lies on the grid of cal-

Lattice constants and pseudopotential form factors (in Ry) used in our calculations.

TABLE I.
Lattice
const (A) vS(3) VS (8) vS(11) VA@3) VA 4) vA(11)
Si 5.43 -0.21 0.04 0.08 0 0 0
Ge 5.66 -0.23 0.01 0.06 0 0 0
GaAs 5.64 —0.246 —0.001 0.074 0.058 0.051 0.001
ZnSe 5.65 -0.213 —0.011 0.067 0.203 0.107 0.015
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FIG. 2. Calculated microscopic dielectric function of Si along two symmetry directions. €(§) for § along [110] is
essentially the same as for § along [100].

culated points.

The 3360 points in the summation over the Bril-
louin zone provide sufficiently accurate conver-
gence. Other calculations!® of €(0) using over
3000 000 points in the Brillouin zone differ from
our values of €(0) by less than 3%.

III. RESULTS

The calculated dielectric functions of Si, Ge,
GaAs, and ZnSe appear in Figs., 2-5. For all four
crystals, €(§) is a smooth monotonically decreas-
ing function of |§|, with zero gradient at § =0.
The value of e(éI) was calculated at several points
for small § to make certain it exhibited no maxi-
mum (for  # 0). Such maxima do occur in the re-
sults of Srinivasan® and of Nara.’

€(d) in the [110] direction is practically indis-
tinguishable from e(q) in the [100] direction. The
values of €(J) in the [111] direction are slightly
less than in the other directions. A possible rea-
son for this slight anisotropy is that the [111] di-
rection is the direction to the nearest-neighboring
atoms in the crystal, Between nearest neighbors
there is good evidence for localized bonding char-
ges, This has been confirmed by x-ray diffraction
experiments for diamond.!! This localized elec-
tronic charge constrains the electronic charge dis-
tribution and seems to prevent the screening from
being as effective. Consequently, €(d) is lower in

magnitude in the [111] direction than in the other
directions,

IV. COMPARISON

As stated above, our calculations show that e(d)
decreases as || increases, and there exists little
anisotropy for small g. This decrease in €(§) is
in contrast to the results of Srinivasan,* who finds
that €(d) increases in this region. However, he
does note that this increase is sensitive to his
choice of matrix elements.

Our results for small g also contrast with the
results of Nara.,’ Nara finds that €(q) increases
rapidly and is remarkably anisotropic for small g.
From our experience with these calculations, we
find that great care must be taken when we calcu-
late the inner products for small g. The inner
product of the two Bloch wave functions u,(k) and
,,(k +4) should go smoothly to zero as q— 0, but:
for certain points k in the zone there occur dis-
continuities in the inner products as ¢ — 0. The
reason for such a discontinuity is that in the pseu-
dopotential method the wave functions u,(k) and
um(E +d) are expanded in two different sets of plane
waves, the first set satisfying the criterion &+ G2
<7, and the second set satisfying |k +§ + GI2<7.
The immediate effect is to cause the absolute val-
ues of these inner products to increase much too
rapidly. The over-all effect does produce sizable
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errors in €(d ), especially for small ¢, and in par-
ticular, it produces a humplike effect similar to
the results of Nara at small g. When we use the
proper approach of expanding the wave function
u, (& +d) in the same set of plane waves as for

Uy, ('12), we obtain no maxima for nonzero g and little
anisotropy for small ¢g. It should be noted that for
larger g, good agreement exists between our re-
sults and the results of Nara,

In Fig. 1 we compare our calculation of the di-
electric function of silicon with the calculations by
Srinivasan and by Nara. We obtain a value for
€(0) of 11. 3 for Si, while Nara obtains a value of
10.8. The measured value is 11,70, 2,2 a value
which Srinivasan uses as a parameter in his model.
For Ge, GaAs, and ZnSe we obtain values for €(0)
of 14,0, 8.9, and 4. 8, respectively, while the mea-
sured values are 15. 8 for Ge,!? 10.9 for GaAs,*®
and 5.9 for ZnSe. ™

V. APPLICATIONS

An immediate application of our results is a
more precise calculation of screened pseudopoten-
tial form factors, as suggested by Phillips’ and by
Srinivasan.* In particular, our calculations allow
us to evaluate the pseudopotential form factor
V,(G,) for S8i. [G, is the magnitude of the first re-
ciprocal-lattice vector 27/a(111).] Now the
screened pseudopotential form factors for Si have

_already been calculated by Animalu and Heine, '
but they used the Hartree free-electron dielectric
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function’® €, (§) to screen the ion core instead of
the correct dielectric function €(d). We propose
to demonstrate that by using our €(d) asthe screen-
ing function, we obtain a value of V,(G,) for Si re-
markably close to the empirically determined val-
ue,® provided that we include an exchange corvec-
tion term.

Animalu and Heine screened the atomic form fac
tor V,(q) for Si with the function X; (¢):

Vv, @) =v,@/X @,
where
X, @)=1+[e,@) - 1][1-3q%q?+R% +£Z)™"] .

The quantity in the second bracket is an approxi-
mation suggested by Hubbard!’ to account for the
exchange correction on a free-electron gas. (Ani-
malu and Heine chose k4 =2k /7.) For § =G,, the
value of this exchange term is 0.77. For a free-
electron gas with the density of the valence elec-
trons of Si, € (G,)=1,98, so that X;(G,)=1.76. If
the correct X (g) is defined in an analogous manner
to X4(q), with e(g) replacing €4(g), our value of €(G,)
=1, 43 gives X(G,)=1. 33.

The complete pseudopotential V,(G;) must also
account for the bonding charges. Since €(0)=11,7
for Si, there is a charge of 2¢/€(0) in each of the
bonding charges located midway between nearest
Si atoms, The total expression is

Vo(g)=V, (@) +[S,(@)/S . (@] V,(a),

FIG. 3. Calculated micro-
scopic dielectric function of
Ge along two symmetry direc-
tions. €(§) for § along [110]
is essentially the same as
for § along [100].
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FIG. 4. Calculated microscopic dielectric function of GaAs along two symmetry directions.

FIG. 5. Calculated microscopic dielectric function of ZnSe along two symmetry directions.
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where V, and V, are the properly screened pseu-
dopotentials for the Si atoms and the bonding char-
ges, respectively, and S,/S, is the ratio of the
structure factors of the bonding charges to the Si
atoms.

V,(G,) is just equal to Animalu and Heine’s val-
ue of - 0. 18 Ry corrected by a factor X;(G,)/X(G,).

Therefore, V,(G,)=-0.18(1,76/1.33)=~0. 238 Ry.

V, (g) may be calculated from Poisson’s equation:
Vy(q) = (4me/24%)8e/€(0) .

The exchange correction reduces V, (G,) by afactor
of 0.77. Thus we have (S,/S,)V,(G,) = 0. 031 Ry.
Consequently,

V,(G,)=-0.238+0.031=-0. 207 Ry .
This value is in excellent agreement with the value

of V,(G,)=- 0. 21 Ry obtained by Brust, Cohen,

and Phillips.®
We can make similar arguments for germanium,

V,(G,) is equal to Animalu and Heine’s value of
-0.19 Ry, corrected by a factor X; (G,)/X(G,),
which gives V,(G,)=-0.251 Ry. V, is reduced
because €(0)=15. 8 for Ge, and thus (S,/S,)V,(G,)
=0.022 Ry. Consequently,

V,(G,)=-0.251+0.022=-0. 229 Ry.

This value is in excellent agreement with the value
of V,(Gy)=-0.23 Ry obtained by Cohen and Berg-
stresser.?

It should be noted that the comments by Srini-
vasan® on Nara’s results do not hold for our re-
sults. We have used a large number of interband
transitions (1-4) - (5-15) in our calculations. The
convergence at large ¢ is satisfactory in view of
the very small contribution to €(g) from the tran-
sitions (4—-14), (4-15), etc. Furthermore, our
value of € (0)=11. 3 is obtained without the neces-
sity of adding more sampling points for the case
q=0.
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